Week 8 | Module 5 | Introduction to Machine Learning I 

Instructor: Ebelechukwu Nwafor, PhD This two-part module delves into the core principles of machine learning. In Part I, students will learn about supervised learning techniques, covering linear regression, classification, and model evaluation metrics. They will explore foundational algorithms, including decision trees, support vector machines, and k-nearest neighbors, while focusing on applications in real-world scenarios.

Week 8 | Module 5 | Introduction to Machine Learning I

Instructor: Ebelechukwu Nwafor, PhD This two-part module delves into the core principles of machine learning. In Part I, students will learn about supervised learning techniques, covering linear regression, classification, and model evaluation metrics. They will explore foundational algorithms, including decision trees, support vector machines, and k-nearest neighbors, while focusing on applications in real-world scenarios.

Week 9 | Module 6 | Machine Learning II

Instructor: Ebelechukwu Nwafor, PhD Part II builds on these basics from Part I, introducing unsupervised learning techniques such as clustering and dimensionality reduction. The module will also cover key concepts like overfitting, and model selection. By the end, students will understand both theoretical and practical aspects of machine learning, with hands-on experience in building and […]

Week 9 | Module 6 | Machine Learning II

Instructor:  Ebelechukwu Nwafor, PhD Part II builds on these basics from Part I, introducing unsupervised learning techniques such as clustering and dimensionality reduction. The module will also cover key concepts like overfitting, and model selection. By the end, students will understand both theoretical and practical aspects of machine learning, with hands-on experience in building and […]

Pin It on Pinterest